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Gas diffusion from ascending gas bubbles 

By P A U L  H. LEBLOND 
Institute of Oceanography, University of British Columbia 

(Received 13 November 1967 and in revised form 22 September 1968) 

General qualitative rules are derived for the behaviour of the volume of an 
ascending spherical bubble and of the gas pressure within it. Three modes of 
behaviour are discerned, corresponding to as many possible orderings of the 
relative influences of ascent velocity, gas leakage and surface tension on the 
volume and the pressure balance. These general results are nearly independent 
of the particular forms of the ascent velocity and gas exchange functions. 
Quantitative results are presented for the Stokes law r6gime. 

1. Introduction 
The dynamics of gas bubbles ascending in a liquid have been discussed in 

numerous papers, both from a theoretical (Levich 1962, chapter viii; Moore 1965) 
and from an experimental point of view (Haberman & Morton 1953). The problem 
of gas diffusion from such bubbles has also received considerable attention 
(Levich 1962; Deindoerfer & Humphrey 1961). The combined problem of the 
interaction between gas diffusion and the dynamics of the ascent has also been 
investigated (Levich 1962, $80 ;  Calderbank 1967). This last problem is here 
formulated for spherical bubbles in a way which brings out remarkably clearly 
the relative influences of the physical processes involved. General qualitative 
results will be found concerning the behaviour of the volume of nearly spherical 
gas bubbles and of the pressure within such bubbles and these results will be seen 
to hold for a wide class of ascent velocities and gas exchange functions. 

The volume of a gas bubble ascending in an unsaturated liquid varies through 
the effect of two conflicting influences. Gas continuously leaks out of the bubble 
to dissolve in the surrounding liquid and if the bubble were stationary the ensuing 
loss of mass would necessarily lead to its ultimate disappearance. On the other 
hand, as a bubble ascends, the ambient hydrostatic pressure decreases and so 
does the pressure of the gas within: the bubble tends to expand. If, as is the case 
for small bubbles, the outward mass flux increases with increasing bubble radius 
more slowly than the radius itself, the total outward leakage will be a weaker 
function of the radius than the volume of the bubble, and the influence of leakage 
on the mass balance will be more important for small than for large bubbles. The 
rate of ascent is also a function (generally increasing, although not monotonically) 
of bubble radius. One then expects that for bubbles beyond a certain size, with 
small enough ratio of area to volume and high enough velocity of ascent the 
expansion associated with the decrease in hydrostatic pressure will more than 
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account for the loss of gas through the interface and that the bubble will grow in 
volume although continuously losing mass. For much smaller bubbles the out- 
flow of gas will dominate and such bubbles will shrink as they rise. Between the 
two modes of behaviour, there will exist a critical radius for which a bubble will 
neither grow nor shrink. This critical radius should depend on the ascent velocity 
and on the ratio of the surface area to the volume of the bubble, all other para- 
meters being fixed. 

The pressure of the gas held within the bubble normally decreases through the 
ascent, as indicated above. Nevertheless, one should not forget that the gas 
pressure is somewhat higher than the ambient pressure, because of the effect of 
surface tension. The contribution of the surface tension is inversely proportional 
to the curvature, and will thus be most important in very small bubbles. Thus, if 
a bubble is so small that gas leakage controls its volume variation (the bubble 
shrinks), and that its internal pressure is dominated by surface tension effects, 
the pressure of the gas within will increase as the bubble rises, in spite of the 
decrease in ambient pressure. We should then expect that there exists a second 
critical radius for which the gas pressure does not vary as the bubble rises. 

The behaviour of bubble volume and pressure is thus not a priori determined 
but depends on the relative influences of three physical processes: isothermal 
expansion associated with the ascent, gas leakage and the additive pressure effect 
of surface tension. The influence of these processes is investigated here for the 
particularly simple case of spherical bubbles. 

2. Formulation and general results for spherical bubbles 
The discussion is restricted to bubbles of very nearly spherical shape. The 

results will therefore hold only for Reynolds numbers, Re, such that the distortion 
from sphericity is less than say, 5 yo. For thin liquids, such as water, this degree 
of distortion is reached at  Re = 0(102) (Moore 1965); for thicker liquids (oils, for 
example) such distortion is already present for Re = O ( 1 ) .  The liquid will be 
assumed isothermal, and so will the gas within the bubble. From the ideal gas law 
we have €or t,he pressure inside the bubble, P, 

P = pRT/M, (1 )  
where p is the density, T the constant temperature and M the molecular weight 
of the gas, and R the molar gas constant. Because of surface tension, c, the 
pressure P is higher than the pressure in the surrounding liquid, Po: 

P = P0+(%/r), (2) 
where r is the radius of the bubble. 

has for Po the hydrostatic relation 
Taking the z-axis vertically upwards with origin a t  the depth of release one 

The surface of the liquid is at  z = H and is under atmospheric pressure Po(H); 
po is the density of the liquid and g the acceleration of gravity. 
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The bubble ascends through the liquid at  the rate 

dzldt = U(r , t ) .  (4) 

The dependence on the density difference, po-p,  is neglected; po is always much 
greater than p. Experimental curves for the terminal velocity of ascent may be 
found in a number of references (Datta, Napier & Hewitt 1950; Haberman & 
Morton 1953). As the results to be derived in this section depend neither on the 
shape of the velocity curve nor on the assumption that a steady state has been 
reached, U(r ,  t )  will for the moment be left unspecified. It will only be assumed 
that the Reynolds number Re = 2rU/v increases monotonically with r (v is the 
kinematic viscosity of the liquid). 

Finally, the gas is assumed to leak out of the bubble at the rate of &F units of 
mass per unit time per unit area. The rate of leakage depends, for a given liquid- 
gas system, on the rate of ascent, the radius of the bubble and the difference 
between the gas concentration C in the liquid in contact with the bubble and the 
uniform concentration very far away from it, C,. The concentration, C, may 
itself be influenced by the presence of surface active materials on the bubble. 
The mass conservation equation is written 

(d/dt)pr3 = -r2F,  ( 5 )  

where F = F(C - C,, r ,  U ) .  No specific form for F is introduced at  this point. 
Only the following, highly plausible, conditions are imposed: (i) F increases 
monotonically with (C - C,) and vanishes when the concentration difference 
vanishes; (ii) as r tends to zero, F vanishes more slowly than the Reynolds 
number. 

Eliminating p and z from (1)  to (5) we obtain the two differential expressions 

from which the evolution of r and P can be obtained by integration once U and P 
are specified. 

We note that the denominators of the differential quotients in (6) and (7 )  never 
vanish, since, by ( 2 ) ,  3P-  2r / r  is always positive. The qualitative behaviour of 
the r and P variations is thus entirely determined by the sign of the numerators. 
Eliminating the time variable from (6) and ( 7 )  and writing a = pogM/RT we 
find that dr 

dP - = 

This equation contains, in a very concise form, the essential physics of the 
problem. When the numerator of the differential quotient vanishes, dr = 0, and 
gas leaks out of the bubble just fast enough to counteract the expansion associ- 
ated with the decrease in hydrostatic pressure. When the denominator vanishes, 
d P  = 0, and the bubble ascends at a rate such that the increase in pressure. 
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brought about in a shrinking bubble by the influence of surface tension is exactly 
balanced by the decrease in hydrostatic pressure. The relative importance of 
leakage and rate of ascent on the volume of the bubble t,hus determines the sign 
of the numerator, whereas the relative roles of surface tension (i.e. increase in 
internal pressure due to shrinkage brought about by rapid leakage of the gas) and 
ascent on the pressure in the bubble determine the sign of the denominator. 

Only the case F > 0 (outward leakage from the bubble) will be discussed. The 
case F < 0 is not very interesting (at least not when there is only one gas in the 
bubble); the bubble simply expands as it rises, no matter what the initial condi- 
tions are. For r + 0 the numerator and the denominator of (8) cannot vanish 
simultaneously since 3P-  2ulr > 0. This is of course quite as expected; since a 
bubble must already be shrinking for the denominator to vanish, its radius 
cannot simultaneously be stationary. If two critical radii r,(P) and rb(P) are 
defined on which dr = 0 and dP = 0 respectively, it follows that, if they are both 
non-zero, r,(P) and rb(P) are never equal, The two critical radii, under the condi- 
tions imposed on F and U, can coincide only when C = C,, in which case they 
both vanish. The only singular point in the (P, r)-plane is at  [P(C = Cm), r = 01. 
To decide whether r,(P) > rb(P) or vice versa, it is then sufficient to investigate 
a limiting case for which explicit expression for F and U are available (that of 
small Reynolds number). As we shall see below, r,(P) > T b ( P ) .  

For arbitrary velocity and gas leakage functions (except for the restrictions 
mentioned earlier) spherical bubbles fall quite naturally into three categories 
according to the type of trajectory which they follow in the (P,  r)-plane. The 
condition that F vanish more slowly than the Reynolds number at small r ,  
together with r,(P) > rb(P) divides the (P ,  r)-plane into three regions: 

dr dP 
at dt r > r,(P):- > 0, - < 0; 

dr dP 
- > 0. 
dt 

r < r b ( P ) : z  < 0, 

The reader may refer to figure 1 which shows the trajectories in an example 
specifically worked out to illustrate the three types of behaviour. For 
r(t  = 0 )  > r,(t = 0 )  the bubbles grow monotonically in size as they ascend; gas 
leakage is not predominant in the volume balance and surface tension is relatively 
insignificant. For r(t  = 0) < rb(t = 0 )  on the other hand, leakage and surface 
tension dominate the volume and pressure balance; the gas pressure increases 
and the bubbles shrink and ultimately collapse. Bubbles with initial radius 
intermediate between r,(t = 0 )  and rb(t = 0 )  follow trajectories along which, at  
first, the pressure and the volume both decrease. Ultimately these trajectories 
must cross either the r,(P) or the rb(P) curve and the bubble must either expand 
or disappear. Whenever the liquid is not saturated with gas under atmospheric 
pressure PJH),  some of these trajectories may reach the surface before crossing 
the r,  or rb curves. 
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We finally note that since F and U are single valued functions of P and r ,  
drldP is uniquely specified at  all points of the (P, r)-plane except at  the singular 
point [P(C = Cm),r = 01. As bubbles of identically zero radius are not very 
interesting, that point will be excluded from further consideration. Thus the 
trajectories traced by ascending bubbles in the (P, r)-plane never intersect each 
other. Each pair of values of pressure and radius lies on one and only one 
trajectory and can be reached from only one initial radius. 

Bubbles in practice will start from rest. No matter what the initial size of the 
bubble gas leakage will always dominate the volume balance, and surface tension 
the pressure balance, during some fraction of the acceleration period, since when 
U = 0, ra = rb = 0. For a very short time, even a large bubble will shrink slightly 
and for an even shorter time (since rb < r,) the pressure within it will rise, as the 
bubble departs from rest. The effective initial radius, attained when the bubble 
has reached terminal velocity, and on which calculations are usually based, will 
thus be slightly smaller than the actual initial radius. Since terminal velocity is 
reached quite quickly (in a displacement of a few bubble radii) these transient 
effects should have only a minor importance. 

The qualitative results derived in this section are considered to be the most 
significant part of this paper. Quantitative results will now be derived for a 
special case. 

3. The Stokes law rkgime 
For small Reynolds numbers, explicit expressions for U and F are available. 

The Rybczynski-Hadamard formula gives (Levich 1962, $70),  for the rate of 
fall of a gas sphere through a liquid, U(r )  = &gr21v. It is however known (Levich 
1962, $80) that in all but the most meticulously cleaned liquids gas bubbles 
behave at  low Reynolds numbers like solid spheres, with terminal velocity given 
by the Stokes formula: U(r)  = Q r 2 / v .  We will use the subscript c (clean) for the 
ideally clean system and d (dirty) for systems where surface contaminants are 
present. 

1, with D the diffusivity of the gas in the liquid, 
a thin concentration boundary layer is formed on the surface of the bubble and 
diffusion from C to C, occurs across a small distance S N DrlU. Since D is 
typically about three orders of magnitude less than v, there is an appreciable 
range of bubble radii over which the PQclet number is large and the Reynolds 
number small. For that case, F, and Fd are given by (Levich 1962, $0 72 and 14) 

If the PBclet number UrlD 

If we assume that the liquid in contact with the bubble surface is always saturated 
with gas under the pressure prevailing inside the bubble we can write the concen- 
tration C (in g ~ m - ~ )  as C = KP,  where K is the coefficient of absorption for the 
liquid-gas system (Dorsey 1940, p. 529). If some surface active material retards 
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gas diffusion through the bubble surface, K may be only a fraction of the absorp- 
tion coefficient. Putting 

F is given as a function of r  and P by 

F, = p , r v - y ) ,  
Fa = P a d ( P - y ) .  

In the Stokes law rhgime, F and U clearly satisfy the mild restrictions imposed 
upon their behaviour in the previous section. In  particular it is seen that F does 
vanish less rapidly than U a t  small r .  Substituting for F, and U, into (8), one finds 
that for a clean system 

from which the critical radii r,(P) and rb(P)  are given 

For a contaminated bubble, substitution of Fa and Ua in (8) gives 

from which 

For both conditions (10a) and ( l o b )  r,(P) and rb(P) coincide only when P -  y = 0,  
in which case they both vanish. Also, since rblra = ( 2 r / 3 P ~ , ) $  for a clean bubble, 
(2v/3Pru)# for a dirty bubble, r,, < r, for all P > y. Values of rb and r, are listed 
in table 1 for some liquid-gas systems under a surface pressure Po(H) of one 
atmosphere, at  a depth of 1 m. 

The pressure inside the bubble at the depth of release depends through (2) on 
the initial radius. The critical radii r, and r,, are thus different for bubbles of 
different sizes at  the same depth. Values are listed in table 1 for two initial radii: 
first for bubbles for which r 9 2v/Po and for which P N Po, and secondly for 
bubbles with r = u/Po, for which surface tension contributes twice as much as the 
hydrostatic head to the total pressure. 

Stokes law gives reasonable results up to about Re = 1; this corresponds to 
r = 7.7 x 10-3 cm in water, to r = 1.3 x cm in alcohol. Some of the rb and most 
of the r, listed in table 1 exceed these values, and little weight should be put on 
them since they fall outside the range of Reynolds numbers for which the 
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D K 
104cm2 10-6g y 

Liquid Gas sec-l cm-a/atm atm 
Water H, 4.5 1.7 0.5 A 

B 
Water N, 2.0 21 0.5 A 

B 
Water CO, 1.6 2000 0.5 A 

B 
Water 0 2  2.0 49 0.5 A 

B 
Water 0, 2.0 49 0-5 A 

B 
Ethyl alcohol CO, 3.2 360 0.5 A 

B 

Clean system Cont,aminated 
rJ-7 6 

rb r a  rb  ro 
10-3 10-2 10-3 10-2 
cm cm cm cm 
8.1 6.2 1.3 1.0 
8.4 6.9 1.4 1.2 
6.5 4.6 1.0 0.7 
6.7 5.2 1.0 0.8 

21 23 4.5 7.3 
22 26 4.8 8.6 

2.3 1.1 1.7 1.6 
2.4 1.2 1.8 1.9 
1.3 0.5 0.9 0.5 
1.7 0-8 1.3 1.0 
8.6 1-1 4.8 7.9 
8.9 1.2 5.1 9.5 

TABLE 1 .  Critical radii ra and rb calculated from (10a) and ( l o b )  for liquid-gas systems at 
15 "C at a depth of 1 m. Two sets of results are shown: those following the letter A are for 
large radii; those following B for an initial radius equal to v/P,(O). Data from Handbook of 
Chemistry and Phy8ic8 (48th ed.), Int. Critical Tables (1928) and Dorsey (1940). 

formulae from which they were derived apply. As a matter of fact, those ra and 
rb which fall outside the Stokes law rkgime should be expected to be under- 
estimates of the correct values, since U ( r )  does not increase as fast as r2 for 
Re > 1. For example, Deindoerfer & Humphrey (1961) report that a C 0 2  bubble 
of radius 0.48 cm, ascending in water, still shrinks. This value is about twice the 
ra calculated from ( l o a )  for clean bubbles. 

For oxygen bubbles in water and saturated under one atmosphere (fifth entry 
in the table) both ra and r, are within the Stokes law domain for a clean system. 
This case has been singled out for more detailed calculations, mainly to  illustrate 
the general behaviour of the trajectories in the ( P ,  r)-plane, as discussed in the 
preceding section. 

The differential quotients (6) and (7) take particularly simple forms if we 
introduce for a clean system non-dimensional variables as follows: 

P' = P/PO(O), 
Y' = Y/PO(O), 
r' = r/raO, 
t' = g2por&t/3vPo(0), 

where Po(0) is the initial value of the hydrostatic pressure and raO is the value of 
ra at  t = 0 for r 

Substituting for Fc and U,, (6) and (7) become 

cr/Po(0): 
TaO = [ ( 3 v / ~ )  Pc(PO(o) - Y)I*- 
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A similar formulation is possible for the contaminated system with t‘ multiplied 
by 6 and raO written from (10 b) .  One notes that besides initial conditions on r’ and 
P‘, only two parameters must be specified to describe the behaviour of bubbles 
in a given liquid-gas system: y‘ and 2~/3r, ,P0(0).  In  a clean system under the 

1.2. 

1.0 

08 

T’ 

0 6  

0.4 

0.2 

0.0’ I I I I I I I 
092 0.96 1.00 1.02 1.04 1.06 

P’ 
FIGURE 1. The evolution of radius and pressure of oxygen bubbles ascending from a depth 
of 1 m in clean water saturated with that gas under atmospheric pressure. The radius T’ is 
in units of raO = 5.0 x cm and the pressure P‘ in units of P,(O) = 1.1  x lo6 dynes/cm. 
The bubbles start with initial conditions given by a point on the ‘initial conditions’ line; 
time increases along the trajectories in the direction indicated by the arrows. Atmospheric 
pressure is at  P‘ = 0.91. 

conditions of the fifth entry in table 1 (0, bubbles in water) these parameters ta,ke 
the values 0.91 and 8.8 x respectively; 

raO = 5-0 x 10-3cm and Po(0) = 1-1 x 106dynes/cm2. 

Trajectories are plotted in figure 1 for values of initial radii chosen so as to show 
the different types of behaviour described in 0 2 .  
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4. Conclusions 
The results of the above analysis for the Stokes law regime are of course of 

limited practical application since they hold only for very small bubbles. The 
more qualitative results on spherical bubbles are however quite general, do not 
depend critically on the ascent velocity or on the gas exchange function and still 
hold well beyond the Stokes law rhgime, provided only that the bubbles are not 
too distorted. Extension of these arguments to larger spherical and to non- 
spherical bubbles and to situations where many gases diffuse through the bubble 
surface should also prove profitable. 

I wish to thank R. W. Burling for carefully reading the manuscript and the 
referees for a number of valuable suggestions. 

REFERENCES 

CALDERBANK, P. H. 1967 Trans. Instn. Chern. Engrs. 45, CE 209. 
DATTA, R. L., NAPIER, D. H. & HEWITT, D. M. 1950 Trans. Inatn. Chem. Engrs. 28, 14. 
DEINDOERFER, R. N. & HUMPHREY, D. E. 1961 Ind. Eng. Chem. 53, 755. 
DORSEY, N. E. 1940 Properties of Ordinary Water Substance. New York: Reinhold. 
HABERMAN, W. L. & MORTON, R K. 1953 David Taylor Model Basin, Rep. no. 802. 
LEVICR, V. G. 1962 Physicochemical Hydrodynamics. New York: Prentice Hall. 
MOORE, D. W. 1965 J .  PZuid Mech. 23, 749. 




